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Humans can recognize an object within a fraction of a second,

even if there are no clues about what kind of object it might be.

Recent findings have identified functional properties of

extrastriate regions in the ventral visual pathway that are

involved in the representation and perception of objects and

faces. The functional properties of these regions, and the

correlation between the activation of these regions and visual

recognition, indicate that the lateral and ventral occipito-

temporal areas are important in perceiving and recognizing

objects and faces.
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Introduction
Humans can recognize an object within a fraction of a

second. The neural mechanisms underlying this remark-

able ability are not well understood. A promising strategy

for attempting to understand human visual recognition is

to characterize the neural system that accomplishes it —

that is, the ventral visual pathway. This system extends

from the occipital lobe into ventral and lateral regions of

the temporal lobe.

Here, I describe recent findings from neuroimaging stu-

dies of humans that have examined cortical regions

involved in visual perception of faces and objects. The

findings from these studies have begun to elucidate the

general organization and functional properties of these

regions. I focus on two main issues in this review. First,

what is the functional organization of the human ventral

visual pathway? Second, what is the role of these regions

in visual object recognition? I will show that ventral

occipito-temporal (VOT) and lateral occipito-temporal

object-selective regions are involved in representing

the shape of an object and are correlated with perceiving

objects in many different recognition tasks.

Object-selective regions in the human brain
Object-selective regions respond strongly when subjects

view pictures of objects but not when they view pictures

of textures, noise or highly scrambled objects. These

regions comprise a large constellation of areas in both

the ventral and dorsal visual pathways that lie anterior and

lateral to early retinotopic cortex. The parcellation of

these areas is difficult because they are largely non-

retinotopic [1] and different types of objects activate

slightly different regions (Figure 1).

Whereas objects, houses and scenes (as compared with

textures) activate both ventral and dorsal regions, faces

and animals (as compared with textures) activate mainly

lateral and ventral regions (Figure 1). Interestingly, faces

and animals seem to activate similar regions, but houses

and scenes activate different regions from those acti-

vated by faces and animals. These patterns of activation

across ventral temporal cortex for certain object cate-

gories (e.g. faces [2–4; Figure 2, red], and houses [5–7;

Figure 2, green]) are replicable within the same subject

[8��,9�], and across subjects [10��,11�], and are invariant

to the object’s format. Other categories that have been

reported to selectively activate focal regions of cortex

selectively include animals [12,13], tools [12,13] and

letter strings [11�,14].

Currently, the main debate is whether regions that elicit

maximal response for a category should be treated as a

module for the representation of that category, or whether

they are part of a more general object recognition system

[8��,9�,15��]. Furthermore, many of these object-selective

regions also respond strongly to object fragments [16,17�],
which further suggests that the underlying representation

is not necessarily of whole objects.

Below I outline several approaches that attempt to explain

the functional organization of the human ventral stream.

Limited category-specific modules and a general

area for all other subjects

Kanwisher and co-workers [3,5,18,19�] have suggested

that ventral temporal cortex contains a limited number

of modules specialized for the recognition of special

categories such as faces (fusiform face area; FFA [3]),

places (parahippocampal place area; PPA [5]) and body

parts (extrastriate body part area; EBA [19�]). The

remaining cortex, which shows little selectivity for parti-

cular object categories, is a general purpose mechanism
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Figure 1
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Different object categories activate different regions across the ventral and dorsal streams. Here we show areas that are activated more by objects

than texture patterns. Textures were created by randomly scrambling object pictures into 400 squares. These maps were obtained in the same

individual with the same threshold level and were highly significant at the voxel level (P < 10-6). The color-coding indicates statistical significance.

Data analysis was done with Brainvoyager (Brain Innovation, Masstricht, Netherlands) on a voxel-by-voxel basis (resolution 3 � 3 � 3 mm).
Comparison between objects and textures identifies both category-specific regions and nonspecific regions involved in representing many objects.

Retinotopic visual areas were identified in separate scans in which we mapped both phase and eccentricity using complex visual stimuli [25]. (a) Areas

showing higher activation in response to faces versus textures. These regions include the fusifom gyrus, the lateral occipital sulcus, the posterior part

of middle temporal gyrus and a focus in the superior temporal sulcus. (b) Areas showing higher activation in response to four-legged mammals versus

textures. Note that these regions are similar to regions that are activated when subjects view faces (excluding the superior temporal sulcus focus).

Increasing the threshold level reduces the extent of the activated regions for both faces and animals, but the centers of the activated regions are

similar. (c) Areas showing higher activation in response to scenes (which contain no obvious object) versus textures. Note that the pattern of activation

is strikingly similar to regions activated by houses. In the ventral stream, areas that show higher activation for houses and scenes in the collateral

sulcus consist of two foci: a posterior focus that partially overlaps with v4, and an anterior focus in the collateral sulcus/parahippocampal gyrus that

prefers peripheral visual stimuli. (d) Areas showing higher activation in response to houses versus textures. Ventral regions include lateral occipital,

regions in the medial bank of the collateral sulcus and the parahippocampal gyrus. Dorsal regions include v7 and an additional region lateral to v3a

that is yet to be named. Note that these regions differ from the regions activated when people view faces or animals, with the exception of lateral

occipital, which was activated by all categories. (e) Cortical regions showing higher activation in response to pictures of novel objects versus texture
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(Figure 1 Legend) patterns. Object-selective regions in the ventral stream consist of the lateral occipital complex (LOC), which can be subdivided

to at least three partitions: lateral occipital (LO), which is located posterior to MT, a region in the inferior temporal gyrus and a region in the mid

fusiform gyrus (mFus). In the dorsal stream, object-selective areas include v7, which lies anterior to v3a located in the posterior bank of the intra-

parietal sulcus and responds both to objects and scenes, and a region in the intraparietal sulcus that has a separate fovea and periphery organization.

Abbreviations: CA, calcarine sulcus; COS, collateral sulcus; IPS, intraparietal sulcus; ITS, inferior temporal sulcus; MT, human motion area; OTS,

occipito-temporal sulcus; STS, superior temporal sulcus; TOS, transverse occipital sulcus.

Figure 2
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pFus

Object-selective regions in the human brain. (a) The maps shown in Figure 1 were combined into a single map, which is displayed on the flattened,

lateral and ventral view of the right hemisphere. (b) Percentage change in the signal from several regions of interests (ROIs) of the same size (200 mm3)

centered on each ROI: LO, lateral occipital (Talairach coordinates [x,y,z]: 40,�74,�2); ITG, ROI centered on blue region in the inferior temporal

gyrus (46,�58,�3); FFA, fusiform face area (40,�50,�15); PPA, parahippocampal place area (25,�35,�9); mFus, region in the mid fusiform that

responds to all object categories (33,�38,�15); Pfus, posterior fusiform gyrus.
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for perceiving any shape of any kind of visually presented

object. This suggests that there is one region for general

object recognition and a few modules for domain-specific

processing.

Process maps

Tarr and Gauthier [20] have suggested that object repre-

sentations are clustered according to the type of proces-

sing that is required, rather than according to their visual

attributes. It is possible that different levels of processing

may require dedicated computations that are initiated in

localized cortical regions. For example, faces are usually

recognized at the individual level, but objects are typi-

cally recognized at the category level. Following this

reasoning, Gauthier and Tarr and their co-workers

[21,22] have suggested that the FFA is not a region for

face recognition, but rather a region for subordinate

identification of any object category that is automated

by expertise.

Topographic representation

Malach et al. [23] have suggested that cortical topography,

in particular eccentricity mapping, underlies the organiza-

tion of ventral [10��] and dorsal stream [24] object areas.

They have shown that some object categories have specific

eccentricity biases. For example, houses [10��,24] activate

regions that contain peripheral visual field representations,

whereas faces [10��,24] and letters [11�] activate regions

that have a bias towards central representations. Malach

et al. [23] propose that the organization of object selective

regions is driven by resolution needs. Thus, objects for

which recognition depends on an analysis of fine details

will be associated with centrally biased representations,

and objects for which recognition requires large-scale

integration will be associated with peripherally biased

representations.

Distributed object-form topography

Haxby et al. [8��] have proposed an ‘object form topogra-

phy’ in which occipito-temporal cortex has a topographi-

cally organized representation of form attributes. The

representation of an object is reflected by a distinct pattern

of response across all ventral cortex, and this distributed

activation produces the visual perception. Haxby et al. [8��]
showed that the activation patterns for eight object cate-

gories were replicable, and that the response to a given

category could be determined by the distributed pattern of

activation across all VOT cortex. Notably, their analysis

indicated that it is possible to predict the category of the

object even when regions that show maximal activation to a

particular category are excluded.

Recently, Spiridon and Kanwisher [9�] showed that

these patterns are replicable even when the object for-

mat is changed and when objects are shown from a

different viewpoint. However, their study showed that

areas that elicit maximal activations for faces and places

do not seem to be useful in discriminating between non-

preferred categories.

Representation of objects in higher
order areas
In the first section, I described the cortical regions that are

activated when people look at objects. In this section, I

discuss how objects are represented in the cortex. Any

useful object recognition system should have ‘perceptual

constancy’ — that is, it should be relatively insensitive to

the precise physical cues that define an object.

Converging evidence suggests that object-selective

regions in the ventral and dorsal stream show perceptual

constancy under many manipulations: object-selective

regions in the ventral stream areas are activated when

subjects view objects defined only by luminance [25],

texture [25,26], motion [25] or stereo [27] cues, but not

when subjects view textures, stationary dots patterns,

coherently moving dots or gratings defined by either

motion or stereo. Other studies have shown that activa-

tion of object-selective areas is independent of object

format (gray-scale or line drawings [28,29]) and these

regions are also activated when subjects perceived simple

shapes that are defined with illusory contours [30].

Several recent studies indicate that object-selective

regions in the ventral stream represent shapes rather than

contours. Kourtzi and Kanwisher [31��] have found that

adaptation (indicative of a common neural representation

[32�]) is observed when objects have the same shape but

different contours, but not when contours are identical

and the perceived shape is different. Similarly, Lerner

et al. [33] have shown that different local contours that

yield similar percepts (occluded versus non-occluded

shapes) produce similar activation in object-selective

regions, but similar local contours that yield different

percepts (scrambled occluded versus occluded) produce

different levels of activation in the same regions.

Another requirement for an object-recognition system is

that it will be invariant to external viewing conditions that

affect objects’ appearance but not their identity. My

colleagues and I [34] have previously shown, using

fMR-adaptation [32�], that VOT (but not lateral occipital)

regions exhibit some degree of invariance to objects’ size

and location. In contrast, we found that object represen-

tations in VOT are not invariant to object rotations around

the vertical axis or the direction of illumination. These

results suggest that object representations at the level

of VOT are not viewpoint invariant representations.

Recently, however, other researchers [35,36] have shown

some degree of viewpoint invariance for object represen-

tations in VOT. One possibility is that the measured

degree of sensitivity to object rotation depends on the

magnitude of object rotation, which varied considerably

between studies.

4 Cognitive Neuroscience
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Taken together, these results demonstrate that within the

same cortical regions there is invariance to a wide range of

visual cues that generate object form and invariance to

some object transformations. This provides strong evi-

dence for the role of the occipito-temporal object areas in

representing object shape.

The role of object-selective regions in
object recognition
Although occipito-temporal object-selective regions are

activated strongly when subjects view pictures of objects

and have a large degree of perceptual constancy, this does

not by itself prove that they are the loci in the brain that

‘perform’ object recognition. Activation during object

viewing could be induced by other processes, such as

visual attention, arousal, figure-ground segmentation and

surface extraction among others. However, several recent

studies show that activation in ventral (but not dorsal)

object-selective areas is correlated to object perception

rather than to low-level features in the visual stimulus

[27,31��,37–44,45�,46,47,48�,49,50].

The correlation between perception and brain activation

in lateral and ventral object areas has been demonstrated

using various methods. Some researchers have monoto-

nically varied a parameter that affects the ability of

Figure 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Faces Birds Guitars

Faces Birds Guitars Faces Birds Guitars

Faces Birds Guitars

∗

∗

∗

∗

Identified Detected but
not identified

Not detected

0.0

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6
%

 S
ig

na
l c

ha
ng

e
%

 S
ig

na
l c

ha
ng

e

0.0

0.2

0.4

0.6

%
 S

ig
na

l c
ha

ng
e

%
 S

ig
na

l c
ha

ng
e

FFA PPA

v1 v4

Retinotopic

Higher order

Current Opinion in Neurobiology

Activation of the ventral visual pathway as a function of success at object identification or object detection. Shown is the percentage change in the

signal, taken from V1, V4, FFA and PPA, averaged across five subjects. In this experiment, subjects looked at pictures of objects that were presented

for 33 or 50 ms (threshold was set individually for each subject) and then masked for 2 s. In separate runs, the subjects saw many pictures of

faces, birds or guitars. A third of the trials included different pictures of a target subordinate category (e.g. pigeons), a third of the trials contained

pictures of other objects from the same basic level (e.g. other birds) and a third of the trials were fixation trials. The trial order was counterbalanced.
Subjects were required to respond to each picture according to whether they identified the subordinate category target (e.g. pigeon), they detected an

object but could not identify it, or they could not detect an object at all (for details see Grill-Spector [51�]). Trials were sorted according to the

recognition performance of the subjects. Here, data are shown from trials in which the target subordinate category was presented. Asterisks on

identified trials indicate significantly higher signal versus trials in which objects were detected but not identified (P < 0:01). Asterisks on detected trials

indicate significantly higher signal versus trials in which objects were present but not detected (P < 0:01). Retinotopic regions show no main effect of

category or success at identification or detection. FFA shows a main effect of success and category. PPA shows no main effect of success.
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subjects to recognize objects and have tracked the corre-

lation between changes in brain activation and recogni-

tion performance of the subjects. Parameters that have

been manipulated include image presentation duration

[42], the amount of visible object behind occluding binds

[43], object contrast [49], and the degree of coherence of

letters [48�] and objects [43] presented in noise.

Such studies have shown that pre-recognition activation

in object-selective regions is lower than recognition acti-

vation, and that activation increases monotonically until

objects are recognized. In some of these studies, however,

the visual stimulus was not identical in the pre-recogni-

tion and recognition conditions. Thus, an alternative

interpretation is that the observed changes in brain acti-

vation were correlated to changes in the visual stimulus

rather than an improvement in recognition performance.

Others have used bi-stable phenomena such as binocular

rivalry [39,50], the Rubin face–vase illusion [46,47] and

ambiguous figures [40] to track changes in brain activation

that correlate with different perceptual states. The advan-

tage of bi-stable phenomena is that the perception

changes when the physical stimulus remains unchanged.

These studies have shown that there is higher activation

in face-selective regions in the fusiform gyrus when

subjects perceive a face than when a face is not perceived.

A different approach is to show pictures close to a recog-

nition threshold, and to compare brain activation in trials

where subjects recognize objects to brain activation in

trials where objects are present but not recognized

[42,45�,51�]. Trials in which subjects correctly recognize

objects produce a higher signal in lateral occipital and

VOT areas than trials in which objects are present but not

recognized. Indeed, using this approach we demonstrated

[42] a correlation between subjects’ object naming per-

formance and activation in object-selective areas. Sub-

jects initially could not recognize most of the objects

when they were presented for brief exposures of 40 ms and

then masked. By implicit training we improved subjects’

recognition performance on these images. Post-training,

when subjects were presented with the same images at the

same exposure duration their performance increased by a

factor of two. Importantly, when subjects were scanned

when they performed this task, the fMRI signal from

object-selective regions increased in correlation with the

improvement in their recognition performance. An advan-

tage of this design is that it can be used to tease apart

processing stages involved in object recognition.

My colleagues and I [51�,52�] used this approach to test

whether distinct areas across the human ventral stream

were involved in different recognition tasks: detection

without explicit recognition (object versus texture) or

subordinate identification (e.g., pigeon versus bird)

[51�]. We used a rapid event-related fMRI experiment,

in which subjects viewed briefly presented objects that

were immediately masked. Our data [51�] indicated that

regions that were correlated with successful identification

of a category were also correlated with successful detec-

tion of that category. In contrast, we found that different

subregions across lateral and ventral occipito-temporal

cortex were correlated with successful identification of

different object categories [51�]. Notably, not all regions

in the ventral stream were found to be correlated with

successful recognition of a category. For example, FFA

activation was correlated with successful identification

and detection of faces and birds but not guitars (Figure 3,

FFA), and PPA activation was not correlated with suc-

cessful identification or detection of faces, birds or guitars

(Figure 3, PPA). These data imply that successful recog-

nition is initiated on a sparse distributed representation of

objects across the ventral stream and not activation across

the whole ventral cortex as suggested by Haxby and

colleagues [8��].

In contrast to our findings that higher orders areas were

correlated with success at object detection and identifica-

tion, retinotopic visual areas in the human cortex were not

correlated with success at object recognition (Figure 3,

retinotopic). Taken together, these results suggest that

activity in lateral occipital and VOT regions reflects the

perceived object rather than the physical stimulus.

Conclusions
Neuroimaging studies have shown that several object-

selective regions in the occipito-temporal cortex are

involved in representing and perceiving objects and faces.

These regions represent object shape rather than con-

tours or other low-level features. In addition, higher

activation in these regions occurs when subjects success-

fully recognize an object than when an object is present

but not recognized. Future studies are required to eluci-

date the nature of object representations in the ventral

visual pathway and the computational processes per-

formed on these representations that facilitate this

remarkable human ability.
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