
Visual perception is amazingly rapid, and this enables 
humans to categorize the visual scene in just one-tenth 
of a second1,2. This speed is particularly remarkable given 
that visual categorization and recognition require a series of 
processing stages over a dozen cortical regions, which 
together constitute the ventral visual processing stream3. 
This ventral stream emerges from the primary visual 
cortex (area V1), continues through a series of retin-
otopically organized visual areas (V2, V3, human V4) 
and eventually reaches the ventral temporal cortex (VTC) 
(BOX 1), where high-level visual regions reside. These 
high-level visual regions do not process local, low-level 
features of visual stimuli, such as contrast or orienta-
tion, but instead process global shape and are involved 
in visual perception and recognition4–6. Lesions to the 
VTC can cause various forms of agnosia7–10 depending on 
the location and extent of the lesion, which supports the 
idea that the VTC has a key role in visual recognition.

A large body of research has examined the informa-
tion content within the human VTC and has indicated 
that it contains information about colour11–14, eccentricity 
bias15–17, visual field maps11,18, specific domains19,20, exper-
tise21, object categories22,23, concepts24, semantics25,26 and 
real-world object size27. However, researchers still lack a 
computational understanding of how the human VTC 
anatomically organizes information and uses it for efficient 
categorization. Recent findings have started to uncover 
the anatomical features of the human VTC, including its 
microarchitecture28,29, white matter connectivity30–32 and 
macroarchitecture17,33,34. This provides a new opportunity 

to examine the functional architecture of the human VTC 
— specifically, to directly link the structural architecture 
of this cortical expanse to the computations that it per-
forms and to the information that these computations 
provide. Although the VTC is a large cortical expanse and 
is likely to be involved in more than one function, here we 
consider the neural mechanisms that underlie one of its 
key functions: visual categorization.

To understand the functional architecture of the 
human VTC and its role in visual categorization, we 
adapted David Marr’s approach for understanding infor-
mation-processing systems35 in order to make it appli-
cable to modern neuroscience methods. Marr proposed 
that, to fully understand a process such as visual catego-
rization, it is necessary to study three levels of the system: 
computation, representation and neural implementation 
(BOX 2). The organization of this Review follows these 
three levels of analysis, addressing three key questions. 
First, what are the computational goals of the VTC? 
Second, what kinds of representations in the VTC sup-
port these computations? And third, how are these rep-
resentations and computations physically implemented 
in the VTC? After examining each level of analysis sepa-
rately, we apply an integrated systems perspective36,37 to 
link the information content of functional representations 
to their physical implementation in the cortex. We con-
clude by synthesizing findings across analysis levels and 
hypothesize that the implementation of functional repre-
sentations in the human VTC is particularly optimized to 
support rapid and flexible visual categorization.

Visual categorization and 
recognition
Determining, from the visual 
input, what it is that we see. 
These processes involve 
multiple levels of abstraction: 
exemplar (‘my car’); 
subordinate category 
(‘Volkswagen Beetle’); basic 
category (‘car’) and 
superordinate category 
(‘vehicle’).

Ventral temporal cortex
(VTC). An anatomical section of 
the human temporal lobe that 
includes the fusiform gyrus, 
parahippocampal gyrus and 
their bounding sulci.
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Agnosia
A condition characterized by a 
loss of the ability to recognize 
objects, people or shapes but 
in which basic visual acuity and 
memory are preserved.

Eccentricity bias
A preference for particular 
eccentricities, such as the 
centre or periphery.

Tolerance
The ability to generalize across 
a transformation (such as size, 
position, illumination or view) 
that affects the appearance of 
an exemplar.

Separable representations
Representations that can be 
divided by a linear boundary.

What are the computational goals of the VTC?
Computational theory suggests that a visual categoriza-
tion system, such as the VTC, should be able to gener-
alize across exemplars of a category while maintaining 
specificity to distinguish among exemplars from differ-
ent categories. A visual categorization system should also 
provide separable category information as well as offer 
flexible access to category information at several levels 
of abstraction (FIG. 1). Below, we consider the compu-
tational requirements that are associated with each of 
these goals. The purpose of this section is to discuss the 
goals of the computations within the VTC, not to derive 
a mathematical formulation of these computations.

Generalization and specificity. A main computational 
challenge for the VTC is to achieve generalization 
among exemplars in order to enable robust and accurate 
categorization while maintaining specificity in order to 
distinguish between exemplars of different categories 
that may have similar appearances35,38 (FIG. 1a). To do 
so, the system must overcome three forms of variabil-
ity: variability in the type of visual information avail-
able (for example, luminance, colour, texture, motion 
and stereopsis); variability in the appearance of a given 
exemplar that results from transformations induced by 

viewing conditions (for example, changes in the illumi-
nation, distance, location and viewpoint of the object); 
and variability in the appearance of different exemplars 
of a category. Computations in the VTC should display 
tolerance to all three sources of variance and should be 
able to categorize new, never-before-seen visual stimuli. 
However, the categorization system should not over-
generalize, as it has to determine not only which exem-
plars are members of the category but also which stimuli 
are not members of the category.

Computational modelling of object recognition has 
provided two important insights. First, the visual recog-
nition system needs linear and non-linear operations39–41 
in order to achieve specificity and generalization, respec-
tively. Linear operators build new features, whereas 
non-linear operations (such as a maximum operator) 
increase generalization across a transformation. Second, 
a sequence of computations along a processing hierar-
chy (BOX 2) increases tolerance to transformations40–42 
and generates more-complex features that are useful for 
recognition and categorization40,41,43.

Efficiency through separable category information. An 
additional computational goal is to achieve rapid and 
efficient categorization. In other words, category infor-
mation should be easy to determine (or to ‘read out’). 
One way to achieve this computational goal is to have 
separable representations. If representations of exemplars 
of different categories are separable — that is, represen-
tations are more similar within a category than across 
categories (FIG. 1b) — it is possible to implement a simple 
linear classifier (illustrated by the dashed line in FIG. 1b) 
to determine which exemplars belong to which category 
in a fast and biologically plausible way44,45. One computa-
tional insight gleaned from the idea of separability is that 
categorical representations do not need to be completely 
tolerant to all of the factors that influence the variabil-
ity between category exemplars but that transformation 
information should be independent from category infor-
mation46. One way to think about this idea is by describ-
ing the representation of all exemplars of a category as 
a manifold in a high-dimensional space46,47 (where the 
dimensionality is the number of independent neurons (or 
processing units)). If this manifold is linearly separable 
from manifolds that describe exemplars of other catego-
ries, then category information can be read out accurately 
and efficiently46–48. Recent computational models have 
suggested that the ventral stream hierarchy ‘untangles’ 
representations through a cascade of processing steps, 
so that representations of objects and categories that are 
inseparable (tangled) at the initial processing stage (for 
example, V1) become separable (untangled) at the last 
stage of the hierarchy48.

Flexible access to category information. An ideal visual 
recognition system would also enable flexible extraction 
of category information at multiple levels of abstraction. 
It has been suggested49 that humans most readily extract 
basic-level category information (for example, cars and 
faces). Nevertheless, the visual system may want to 
extract different levels of category information from 

Box 1 | The boundaries of the ventral temporal cortex

The lateral, posterior, medial and anterior boundaries of the ventral temporal cortex 
(VTC) are defined by the occipitotemporal sulcus (OTS), posterior transverse collateral 
sulcus (ptCoS), parahippocampal gyrus (PHG) and the anterior tip of the mid-fusiform 
sulcus (MFS), respectively (see the figure; dashed lines on the left indicate the location 
of the coronal slices shown on the right). The MFS bisects the fusiform gyrus (FG) 
longitudinally; its anterior tip is located approximately halfway between the temporal 
and occipital poles and aligns with the posterior end of the hippocampus (visible on 
the coronal slice, top right). The ptCoS is arranged transversely to the posterior end of 
the CoS and forms the posterior boundary of the FG. The ptCoS and MFS also serve as 
landmarks for functional distinctions. The ptCoS identifies the boundary between 
human visual cortex area V4 (hV4)114 and ventral occipital area VO-1 (REF. 34), whereas 
the anterior MFS identifies the mid-fusiform face-selective region (mFus-faces17; also 
known as fusiform face area-2 (FFA-2)19). The VTC is anatomically and functionally 
distinct from the lateral occipitotemporal cortex (LOTC)62,113,145. Travelling along the 
cortical ribbon, the LOTC 
is several centimetres 
away from the VTC. 
Although the VTC and 
the LOTC both contain 
regions that are selective 
for objects, faces, bodies 
and places, the LOTC — 
but not the VTC — 
contains regions 
selective for visual 
motion (the human 
motion-selective 
complex, hMT+146). LO, 
lateral occipital (a 
functionally defined 
object-selective 
region)100; pITS, posterior 
inferior temporal sulcus; 
PPA, parahippocampal 
place area20; STS, 
superior temporal sulcus.
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Basic-level
The mid-level (typically 
entry-level) of the category 
hierarchy; members have the 
most shared features and are 
most distinct from other 
categories (for example, car 
versus face).

Superordinate-level
The broadest level of the 
category hierarchy. It has a 
high degree of generality; 
members share fewer 
attributes than members of 
basic-level categories (for 
example, animate versus 
inanimate).

Subordinate-level
The most specific level of the 
category hierarchy; members 
share more features than 
members of basic-level 
categories (for example, Honda 
Civic versus Toyota Corolla).

the same visual input depending on the task demands. 
For example, when shown the two pictures in FIG. 1c, 
an observer may conclude that one picture depicts an 
animate object and the second an inanimate object 
(superordinate-level classification), or determine that one 
picture shows a face and the other a building (basic-level 
categorization), or infer that the face pictured is of a man 
and the building pictured is of a mansion (subordinate-
level classification), or identify a particular exemplar 
(for example, President Barack Obama and the White 
House). As all levels of information may be valid and 
relevant in different circumstances, a computational 
requirement of the VTC is to enable flexible access to 
multiple levels of class information.

Representations in the VTC
We now examine whether VTC representations sup-
port the computational goals of the VTC discussed in 
the previous section. Two types of category represen-
tations are evident in the VTC: clustered regions that 
respond more strongly to stimuli of one category as com-
pared to stimuli of other categories (which we refer to as 

category-selective regions19,20,50,51) and distributed repre-
sentations52, that is, neural patterns of responses across 
the VTC that are common to exemplars of a category22. 
We review findings showing that both clustered and dis-
tributed representations in the VTC support the com-
putational goals of the VTC as a categorization system: 
neural responses generalize across format, transforma-
tion and category exemplars, and also contain separable 
category information at different levels of abstraction.

Generalization: format, transformations and exemplars. 
VTC representations show both generalization and spec-
ificity properties, as predicted by computational theory. 
First, VTC representations maintain their selectivity 
across a large spectrum of visual information, including 
luminance, colour, motion, texture, stereo and illusory 
contours53–56. For example, VTC regions that prefer-
entially respond to a particular category (such as faces 
or places) maintain higher responses to images of that 
category (compared to images of non-preferred catego-
ries) regardless of the contrast57 and format58–60 of the 
images. Furthermore, a considerable body of evidence 

Box 2 | David Marr’s framework adapted to neural investigations of the ventral temporal cortex

David Marr35 established the field of computational vision. He proposed that to understand a complex information-pro-
cessing system such as the visual system, one must analyse the system at three levels. The first is the computational level 
(see the figure, left panel). Analysis at this level aims to establish the goal of the system; in other words, what does the 
system aim to do? The second level is the representational and algorithmic level (see the figure, middle panel). Analysis at 
this level aims to establish the method by which the system achieves its goal; in other words, what are the representations 
that support the computational goals and what algorithms does the system use to transform input information into output 
information? The third level is the implementational level (see the figure, right panel). Analysis at this level aims to establish 
the physical substrates of the computations (level 1) and representations (level 2); in other words, how are they 
implemented in the brain?

We adapt Marr’s framework to accommodate data and measurements of the visual system that have been obtained 
by modern neuroscience methods. For example, in considering Marr’s second level, we consider representations but 
not algorithms, as current experimental methods enable measurements of neural representations but not 
mathematical algorithms. The three levels are linked because the implementation (level 3) may be specialized to solve 
a particular computational goal (level 1) using specific representations (level 2).

CoS, collateral sulcus; FG, fusiform gyrus; MFS, mid-fusiform sulcus; OTS, occipitotemporal sulcus. Left panel is adapted 
with permission from REF. 41, copyright (2007) National Academy of Sciences, U.S.A. Middle panel is reprinted with 
permission from REF. 23, Cell Press (Elsevier). Right panel, top part, is reprinted with permission from REF. 17, Elsevier, and 
the bottom part is adapted with permission from REF. 28, Springer.
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shows that VTC responses are primarily driven by the 
shape53,55,56 and content24 of the stimulus rather than by 
low-level physical properties such as contrast, size or 
colour (left panel of FIG. 2a), and that they are correlated 
with subjects’ percepts4–6,61.

Second, category-selective responses in the VTC 
are less sensitive to image transformations than are 
responses in low-level visual areas. However, VTC 
responses are more tolerant to some image transfor-
mations than to others62. For example, VTC responses 
show some tolerance to transformations of position62–67, 
size62,66,68,69 and mirror rotation (at least for faces70–72), 
whereas they are sensitive to changes in illumination62 
and viewpoint62,71–73.

Third, VTC responses generalize across exemplars 
of a category. Functional MRI (fMRI) responses in cat-
egory-selective regions, such as face-selective regions19 
and place-selective regions20, are consistently higher for 
exemplars of the preferred category than for exemplars 
of non-preferred categories74,75. Intracranial recordings 
from the VTC also show generalization across exem-
plars, especially for face-selective responses76–78 and 
place-selective responses78,79.

Separability of category information in the VTC. The 
separability of representations in the VTC is supported 
by findings showing that category information can be 
accurately read out from distributed VTC responses by 
using linear classifiers22,23,59,66,78,80. Such accurate classi-
fication of category information in the VTC is possible 
because distributed response patterns to exemplars 
of the same category are similar, whereas distributed 
response patterns to exemplars of different categories 
are dissimilar (BOX 2; left panel of FIG. 2b). This is not 
the case in early or intermediate visual areas (V1–hV4) 
of the ventral stream, in which distributed response 
patterns do not differentiate between exemplars of dif-
ferent categories. For example, distributed response pat-
terns to exemplars of the same category in early visual 
areas can be less similar than distributed response pat-
terns to exemplars of different categories23,52,80 (right 
panel of FIG. 2b). Importantly, changes in the distributed 
response patterns in the VTC induced by transforma-
tions are independent of category information, result-
ing in categorical distinctions that are maintained across 
transformations of position, size, inversion and mirror 
rotation63,66,70,71,81,82.

Flexibility: hierarchical category information. 
Representations in the VTC provide information at 
several levels of abstraction, ranging from shape infor-
mation to category information. Intriguingly, accumu-
lating evidence shows that VTC responses represent the 
perceived similarity rather than the physical similarity 
among shapes83–85, objects52 and categories86,87. This sug-
gests that VTC representations may provide a substrate 
for perceptual and conceptual mental spaces.

Notably, distributed representations in the VTC gen-
erate a hierarchical information structure that mirrors 
subjects’ behavioural judgements of superordinate, basic 
and subordinate categories49. For example, one study23 
described a hierarchical category information structure 
— ranging from superordinate categories (animate ver-
sus inanimate) to basic categories (faces versus bodies) to 
subordinate categories (human faces versus animal faces) 
— in both humans and macaques (FIG. 2c). More recent 

Figure 1 | Computational goals of a visual categorization system. a | The 
recognition system should generalize across a range of category exemplars — as well as 
across format and image transformations — while distinguishing between categories 
with similar features and configurations (for example, between faces of different 
species). b | To achieve efficient categorization, category information should be easy to 
read out. One way to achieve this efficiently is to have representations that are linearly 
separable. Assuming that an exemplar is represented by the distributed responses 
across a population of neurons, the computational constraint of separability entails that 
two exemplars of a category will evoke more similar distributed responses across the 
neural population than two exemplars of different categories (left graph). If this 
constraint is met, a simple linear classifier can be used to categorize stimuli (right 
graph). c | The recognition system should be able to extract several levels of information 
from a given input, as required by the task demands; in other words, it should enable 
flexible access to category information at several levels of abstraction. All photos in 
parts a and b courtesy of Getty/PhotoDisc. Barack Obama photo courtesy of Pictorial 
Press Ltd/Alamy. White House photo courtesy of Getty/PhotoDisc.
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research has revealed additional category hierarchies 
in the VTC, including hierarchies related to biological 
classes87, body parts88,89, scene types60,82,88 and semantic 
information26.

Implementational features of the VTC
Neither computational theory nor research of VTC repre-
sentations make predictions about how category informa-
tion should be physically arranged on the cortical sheet. In 
other words, they do not make specific predictions about 
the physical implementation of these representations or 
computations in the brain. However, implementational 
features are important for two reasons. First, the corti-
cal implementation may be geared towards optimizing 
particular computations. As such, investigation of the 
features that underlie the physical implementation of 
category representations in the cortex will shed light on 
the computational strategies used by the brain. Second, if 
one can find a reproducible functional organization in the 
cortex across individuals, such organization may reflect 
consistencies in the under lying neural hardware and con-
nectivity. Consequently, elucidating the factors that are 
responsible for a functional architecture that is consistent 
across subjects will reveal how specific computations are 
physically implemented in cortical circuits in a common 
manner across individuals.

Three key implementational features of the VTC 
are evident at multiple spatial scales. First, neurons 
with similar properties are clustered together (FIG. 3a); 
second, there is a topological organization of functional 
representations relative to cortical folding patterns and 
to other functional representations (FIG. 3b); and third, 
multiple functional representations are superimposed 
on the same cortical expanse (FIGS 3b,4a).

Clustering of neurons with similar function. A funda-
mental property of brain architecture is clustering of 
neurons that have similar properties. Clustering occurs 
at several spatial scales, from columns (which have a 
diameter of 200–400 μm in macaques90 and 1 mm in 
humans91) — which are thought to reflect the basic 
computational unit of the brain92 — to patches93 (0.5 cm 
diameter), to regions (1 cm diameter) and, finally, to 
maps — either within a region (for example, a retin-
otopic map94) or across regions (>1 cm diameter; for 
example, an eccentricity band, which can span several 
visual areas15). Clustering is behaviourally relevant: for 
example, disruptions of normal neural activity by electri-
cal stimulation in face-selective clusters95 in the monkey 
inferotemporal cortex (IT)148 or face-selective regions in 
the human fusiform gyrus96 generate category-specific 
perceptual deficits.

There has been significant progress in our under-
standing of clustering in the VTC at the level of patches 
and regions. First, category-selective regions (which are 
generated by clustering of neurons that are selective for a 
particular category) exist for some but not all categories 
in both humans and monkeys. Research using fMRI dis-
covered category-selective regions in the monkey IT and 
the human VTC for a few ecologically relevant categories: 
faces19,80,93,97,98, body parts50,80,97,98, places20,33,98, and words 

Figure 2 | Properties of the ventral temporal cortex representations.  
a | Generalization and specificity. Stronger functional MRI responses to faces are 
maintained across format (grey level and silhouettes) (left bar chart). Responses are 
higher for upright silhouettes than for upside-down silhouettes (right bar chart). 
**P < 0.001, significantly different from upright face silhouettes. Data from REF. 85.  
b | Separability of category information in the ventral temporal cortex (VTC) but not 
early visual cortex (V1–V2). Correlation matrices indicating the similarity between 
distributed responses to pairs of images from various categories (19 images per 
category) in the VTC and in V1–V2. In the top triangle, each cell shows the correlation 
between distributed responses to a pair of images. The bottom triangle shows the 
average correlation across images of a category. Hot colours indicate similar 
distributed response patterns and cold colours indicate dissimilar distributed response 
patterns. Data are from REF. 78 and show electrocorticography measurements in an 
example subject. c | Flexibility. Hierarchical clustering of distributed VTC responses 
measured with functional MRI reveals a separation between superordinate categories 
(inanimate versus animate), between basic-level categories (faces versus bodies) and 
between subordinate categories (human faces versus animal faces). This demonstrates 
that multiple levels of category information are represented in the VTC. Part c is 
adapted with permission from REF. 23, Cell Press (Elsevier).
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Category hierarchies
A differentiation of 
superordinate, basic-level and 
subordinate categories.

Topological organization
An orderly spatial arrangement 
of functional representations 
across the cortex.

Eccentricity
Distance from the centre of 
gaze. It is measured in units of 
visual angle.

Inferotemporal cortex
(IT). An anatomical section in 
the inferior aspect of the 
temporal lobe in the macaque 
brain that is thought to be 
homologous to the ventral 
temporal cortex in humans.

Fusiform body area
(FBA). A region in the occipital 
temporal sulcus (OTS) that 
selectively responds to images 
of human bodies and body 
parts. It is also referred to as 
OTS-limbs. 

Lateral occipital complex
(LOC). A constellation of 
object-selective regions in 
humans that includes a region 
(termed LO) in the lateral 
occipital cortex that overlaps 
with LO-2, and a region 
(named posterior fusiform/
occipitotemporal sulcus 
(pFus/OTS)) in the ventral 
temporal cortex that overlaps 
with the posterior fusiform 
gyrus and OTS.

Retinotopy
A representation in which 
adjacent points on the retina 
are mapped to adjacent points 
in the cortex.

Voxel
Volume pixel.

Parahippocampal place area
(PPA). A region that responds 
selectively to scenes, places 
and houses over other visual 
stimuli. Recent studies show 
that place-selective activations 
are actually located in the 
collateral sulcus (CoS) rather 
than in the parahippocampal 
gyrus. This area is also referred 
to as CoS-places.

and symbols51,99. In addition, there are regions that pro-
cess shapes and objects more generally56,100 (for example, 
the lateral occipital complex (LOC) in humans56,100,101), of 
which the ventral part — the posterior fusiform/occipi-
totemporal sulcus (pFus/OTS) — is within the VTC 
(BOX 1; FIG. 3b). Second, measurements in the macaque IT 
have shown that the proportion of neurons that is selec-
tive for a particular category within a category-selective 
region (as detected using fMRI) is higher than outside 
this region93,98,102 (FIG. 3a). Indeed, 29–97% of the neurons 
within a cluster detected by fMRI are selective for the pre-
ferred category, with the highest proportion (56–97% of 
neurons) being found in face-selective patches93,98. Third, 
recent studies using high-resolution fMRI21,80,93,103,104 com-
bined with retinotopy18,103 and analysis of single-voxel prop-
erties within these regions have shown that areas that were 
originally thought of as category-selective modules with 
homogeneous properties (for example, the parahippocam-
pal place area (PPA) and the fusiform face area (FFA)) are in 

fact composed of several finer-scale regions with different 
anatomical and functional properties. For example, the 
PPA overlaps with the peripheral representation of least 
two visual field maps (parahippocampal areas PHC-1 and 
PHC-2) that show progressively increased category pref-
erence and decreased retinotopic preference18,105, and the 
FFA contains spatially segregated functional subdomains 
that differ in their adaptation properties104 and in their 
responses to non-face categories, such as body parts80, 
animals and vehicles21,25,106,107.

Topology of representations is tied to cortical folding. 
Recent findings suggest that two types of topological 
organization in the VTC are consistent across subjects: 
first, the location of a functional representation relative 
to the cortical folds; and second, the spatial relationship 
among functional representations. Both types of topo-
logical organization have been observed for fine-scale 
functional clusters (FIG. 3b) and large-scale maps (FIG. 4a). 

Figure 3 | Three implementational features of the ventral temporal cortex: clustering, topological organization and 
superimposition. a | Neurons with similar category selectivity are clustered together. Each yellow dot indicates the 
location of a neuron that was recorded. In the enlarged version, red dots indicate individual face-selective neurons, and 
blue dots represent individual object-selective neurons in the macaque superior temporal sulcus (STS). b | Clustered 
functional regions responding to faces (red), places (green), words (brown), body parts (yellow) and objects (blue) have a 
consistent topology relative to macroanatomical landmarks in the human ventral temporal cortex (VTC). The mid-fusiform 
sulcus (MFS) predicts the location of the mid-fusiform face-selective region (mFus-faces (3); also known as FFA-2) and the 
posterior fusiform face-selective region (pFus-faces (2); also known as FFA-1). The inferior occipital gyrus (IOG) predicts 
the location of the IOG face-selective region (IOG-faces (1); also known as the occipital face area (OFA)). The 
occipitotemporal sulcus (OTS) predicts the location of both the occipitotemporal body part region (OTS-limbs (4); also 
known as the fusiform body area) and the visual word form area (VWFA (6)). The object-selective posterior fusiform/
occipitotemporal sulcus (pFus/OTS (7)) partially overlaps with the VWFA and extends more posteriorly. The collateral 
sulcus (CoS) predicts the location of parahippocampal place area (PPA (5); also known as the CoS place-selective region 
(CoS-places)). As a result of these structure–function correspondences, there is a consistent topological organization 
among functional activations. For example, place-selective regions are medial to face-selective regions, whereas 
OTS-limbs separates pFus-faces from mFus-faces. Notably, within a given macroanatomical neighbourhood in the VTC, 
multiple representations are superimposed. For example, place-selective representations and retinotopic representations 
are superimposed along the CoS. hV, human visual area; PHC, parahippocampal; VO, ventral occipital. Data are shown on 
the inflated right and left hemispheres of a representative subject. Data in part b from REFS 80,147. Part a is adapted with 
permission from REF. 102, Society for Neuroscience.

R E V I E W S

6 | ADVANCE ONLINE PUBLICATION  www.nature.com/reviews/neuro

© 2014 Macmillan Publishers Limited. All rights reserved



Nature Reviews | Neuroscience

MFS

a

b 

Foveal Peripheral Faces Places Animate Inanimate Small Large

Eccentricity bias Animacy Real-world object size

Cytoarchitectonics Connectivity Receptor architectonics Tissue contrast enhancement

Faces

Places

High

Low

FG1

FG2

FG1

FG2

Fusiform face area
(FFA). A region in the lateral 
fusiform gyrus that selectively 
responds to faces compared to 
other animate or inanimate 
stimuli. Recent measurements 
indicate anatomically and 
functionally distinct divisions of 
the FFA, which are referred to 
as posterior fusiform 
face-selective region 
(pFus-Faces; also known as 
FFA-1) and mid-fusiform 
face-selective region 
(mFus-faces; also known as 
FFA-2).

Posterior transverse 
collateral sulcus
(ptCoS). A sulcus that is 
transverse to the posterior 
edge of the lateral branch of 
the CoS and separates the 
occipital lobe from the 
temporal lobes.

Mid-fusiform sulcus
(MFS). A longitudinal sulcus 
that bisects the fusiform gyrus.

Consistent topology of functional representations rela-
tive to anatomical landmarks and to each other is mean-
ingful: it reveals that particular axes of representational 
spaces are physically implemented as axes in anatomi-
cal space and, furthermore, that anatomical constraints 
might determine the topology of functional representa-
tions. The finding that representational spaces are sys-
tematically mapped across the cortical sheet suggests 
that a particular type of information is arranged in the 
cortex in a way that is easy to read out. For example, both 
V1 and middle temporal area MT contain neurons that 
selectively respond to motion in particular directions108 
(direction-selective neurons), but only MT contains 

direction-selective columns109 that are systematically 
arranged across the cortical sheet. This cortical topology 
potentially enables MT (but not V1) to represent motion 
direction information in an explicit manner.

Recent advancements in the delineation of the mac-
roanatomical features of the VTC — including the mor-
phological features of the CoS110, the posterior transverse 
collateral sulcus (ptCoS)34 and the mid-fusiform sulcus 
(MFS)17 (BOX 1) — have improved our understanding 
of structure–function relationships in the VTC. For 
example, irrespective of inter-individual variability in 
MFS morphology, the anterior tip of the MFS predicts 
the location of the mid-fusiform face-selective region 

Figure 4 | Linking anatomical features to large-scale functional maps in the ventral temporal cortex. a | The 
mid-fusiform sulcus (MFS) predicts transitions in many large-scale functional maps in the ventral temporal cortex (VTC). 
Lateral–medial functional transitions in the eccentricity bias map15 (based on data from REF. 17), the domain-specificity 
map (based on data from REF. 33), the animacy map (based on data from REF. 116) and the real-world object-size map 
(based on data from REF. 27 and T. Konkle, personal communication) are all aligned to the MFS (shown by the dashed 
black line). Each panel shows a representative inflated right hemisphere from an individual subject, with the exception 
of the domain-specificity map, which was generated from ten subjects. b | The MFS predicts transitions of anatomical 
features of the VTC. Lateral–medial anatomical transitions in cytoarchitecture, in white-matter connectivity, in the 

to myelin content) are each aligned to the MFS. Each panel shows a representative right hemisphere, with the 
exception of the tissue contrast enhancement map, which is generated from 196 subjects from the Human 
Connectome Project (based on data from REFS 122,123). FG, fusiform gyrus. The cytoarchitecture panel is based on 
data from REF. 17. The connectivity panel is based on data from REF. 30 and Z. M. Saygin, personal communication. The 
receptor architectonics panel is based on data from REF. 29. Receptor architectonics panel courtesy of J. Caspers, 
Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany. Tissue contrast enhancement panel 
courtesy of M. F. Glasser and D. C. Van Essen, Washington University, St Louis, Missouri, USA.
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Convergent representations
Superimposition of multiple 
functional representations on 
the same cortical location.

Divergent representations
Spatially distinct functional 
representations in the cortex.

Cytoarchitectonic
The arrangement (for example, 
columnar), properties (for 
example, density and cell size) 
and characteristic layout of 
neuronal cell bodies in the 
brain.

(mFus-faces; also known as FFA-2)17,80 (FIG. 3b). The MFS 
also reliably separates face-selective regions from place-
selective regions that are consistently localized to the 
CoS33,104 (BOX 1; FIG. 4a), whereas limb-selective regions17,80 
and word-selective regions are consistently localized to 
the OTS15,111 (FIG. 3b). In addition, the ptCoS predicts a 
transition between the occipital and temporal eccentricity 
maps34 as well as the boundary between hV4 and ventral 
occipital area VO-1 (REF. 34) (BOX 1; FIG. 3b). Together, these 
recent findings indicate that a surprising number of func-
tional regions, and boundaries that indicate transitions in 
functional representations, can be predicted from just the 
cortical folding patterns of the VTC17,34.

The tight coupling between functional representa-
tions and cortical folds also generates a consistent topol-
ogy among functional representations. Within the lateral 
VTC, a body part-selective cluster on the OTS separates 
two face-selective regions in the fusiform gyrus, whereas 
object- and word-selective regions partially overlap and 
extend posteriorly to face-selective regions (FIG. 3b). 
These are just two examples, but each functional repre-
sentation in the VTC — whether it is a map or a region 
— has consistent anatomical and functional topological 
boundaries. This tight structure–function coupling is 
most apparent when one examines these relationships 
at the level of individual subjects, as data acquisition (for 
example, voxel size) and analysis choices (for example, 
spatial smoothing and group analyses) can influence the 
measurement of structure–function coupling112–114.

Superimposition of multiple functional representations. 
A third feature of brain architecture that is manifested 
in the VTC is the superimposition of multiple func-
tional maps and fine-scale clusters within the same 
cortical expanse. Superimposition of functional repre-
sentations may be a necessary consequence of project-
ing a high-dimensional representational space onto the 
two-dimensional cortical sheet115. Using movie stimuli 
and data-mining techniques, Haxby and colleagues116 
estimated that the dimensionality of representations in 
the VTC is between 35 to 50 dimensions. Indeed, in 
addition to categorical representations, other dimen-
sions of information have been uncovered in the VTC, 
including eccentricity bias15,17,120, retinotopy11,18, real-
world object size27, conceptual knowledge24,117–119 and 
semantics25. In reviewing these findings, we observed 
that many of these superimposed functional maps have 
a regular relationship to cortical folding patterns — 
especially relative to the MFS, which often identifies 
lateral–medial transitions in these maps (FIG. 4a). Thus, 
there seems to be a regular structure among representa-
tions, in which some representations spatially overlap 
in a systematic manner (convergent representations) and 
other representations are consistently spatially segre-
gated (divergent representations)37. For example, lateral 
to the MFS, in the lateral fusiform gyrus and OTS, rep-
resentations of animate, face, central and small objects 
converge, and these representations systematically 
diverge from representations that lie medial to the MFS, 
where inanimate, place, peripheral and large-object rep-
resentations converge17,27,33,117,120 (FIG. 4a).

We also observed that the spatial convergence and 
divergence among representations extend to finer spa-
tial scales and can also be partial. For example, in the 
lateral VTC, the fine-scale clustered representations of 
faces and body parts17,80,113,121 converge with the represen-
tation of animate objects89,117, thus generating a nesting 
of finer-scale representations within a larger-scale rep-
resentation. Likewise, in the medial VTC, regions that 
respond more strongly to tools versus animate stimuli 
as well as regions that respond more strongly to places 
versus other stimuli20,33 are nested within the large-scale 
inanimate representation117, so that the regions prefer-
ring tools occupy the medial fusiform gyrus and the 
regions preferring places are located more medially in 
the CoS. In a different example, place-selective represen-
tations converge with the ventral occipital (VO-2) and 
parahippocampal (PHC-1 and PHC-2)18 retinotopic 
maps (FIG. 3b). However, this convergence only occurs 
on the peripheral visual field representation18,105, so that 
there is a partial convergence between place-selectivity 
and retinotopic maps. fMRI measurements of conver-
gence provide a voxel-level (2–3 mm) resolution of the 
relationship among representations. At present, we do 
not know how these representations are arranged within 
a voxel. Different representations converging on a voxel 
might be independently arranged across layers of the cor-
tex or across adjacent columns, or they might converge at 
the level of a neuron.

Anatomical constraints of functional topologies. What 
might explain the predictable topologies of superimposed 
functional maps and clusters relative to cortical folding 
patterns? Recent evidence indicates that anatomical con-
straints may underlie the predictable topologies in the 
VTC. For example, in addition to indicating a functional 
transition in large-scale maps (FIG. 4a), the MFS also des-
ignates a microarchitectural transition that corresponds 
to the boundary between two cytoarchitectonic regions 
of the VTC17 on the fusiform gyrus, namely FG1 and 
FG2 (REF. 28) (FIG. 4b). FG1 lies medial to the MFS and 
has a columnar organization, whereas FG2 lies lateral 
to the MFS, is not columnar and has a higher cell den-
sity than FG1 (REF. 28) (BOX 2). Furthermore, transitions 
in the receptor organization of the fusiform gyrus29, 
the measures of tissue contrast associated with myelin 
gradients in the VTC122,123 and differential long-range 
white-matter connections of VTC regions30 all align 
with the MFS (FIG. 4b).

These data suggest that the surprisingly systematic 
topological arrangement of functional representations 
in the VTC relative to the cortical folds may be directly 
related to the physical implementation of underlying 
neural hardware properties, such as cytoarchitectonics, 
receptor architectonics, myelination and white-matter 
connectivity. It is important to note that the scale of 
these structure–function correspondences is not 1:1. 
For example, large-scale maps are larger than the cyto-
architectonic regions (for example, the surface area of 
the animate representation is greater than that of FG2), 
which in turn are larger than each functional region (for 
example, the surface area of FG2 is greater than that of 
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Intermediate complexity 
features
Visual features that contain 
more than one low-level 
feature: for example, a shape 
with an elaborated contour or 
a coloured shape.

the pFus face-selective region (pFus-faces; also known 
as FFA-1). Therefore, it is likely that maps in the VTC 
contain additional cytoarchitectonic regions that have 
not yet been identified and that each of the cytoarchitec-
tonic regions that have been identified so far in the VTC 
contains several functional clusters.

Linking implementation to information
The data reviewed above indicate that the three imple-
mentational features of the VTC — clustering, topology 
and superimposition of functional representations — 
generate a series of nested functional representations 
across multiple spatial scales, with regular convergences 
and divergences. We propose that this spatial hierarchy 
of representations in the VTC may support its hierarchi-
cal information structure (FIG. 2). Below, we develop this 
hypothesis by relating the convergences and divergences 
of the functional representations in the VTC (described 
above) to theories proposing general principles by which 
anatomical organization may be linked to information 
processing36,37,124. We then discuss how these implemen-
tational features may be optimized to support rapid and 
flexible visual categorization.

Computational benefits of convergence and divergence. 
Based on findings in the macaque visual system3,36,37, 
classic neuroscience theories attempted to explain the 
multiplicity of cortical regions in the visual system, 
the apparent parallel processing within36,37 and across 
regions3,36 revealed by functional and cytoarchitectonic 
partitions, as well as the arrangement of cortical connec-
tions36. Specifically, these theories built a framework for 
linking the neuroanatomical and functional implemen-
tational features of the visual system known at that time 
to information processing. An important insight gained 
from these theories is that convergence and divergence 
are implementational strategies used by the brain to 
expedite and increase the diversity of neural computa-
tions36,37,124. Importantly, these theories proposed that 
divergence enables segregation of information and that 
convergence enables integration of information. Here, we 
extend this theoretical framework to provide insight into 
the logic of large-scale organization in the human VTC.

Divergence may speed up neural processing by ena-
bling parallel computations of independent informa-
tion36,37. Applying this principle to the VTC, person 
information is independent from place information and 
the cortical representations of these two types of infor-
mation are physically segregated by the MFS (FIG. 4a). 
Divergence may also enable the generation of neural 
circuits that are optimized for particular computations. 
For example, the differential neural microarchitecture 
across the MFS (that is, between cytoarchitectonic 
regions FG1 and FG2) (FIG. 4b) may reflect dedicated 
neural hardware for particular computations on differ-
ent sides of the MFS. In addition, connections among 
segregated clusters that process related information (for 
example, white-matter connections among clusters that 
are selective for stimuli of the same category31,32,125,126) 
may expedite hierarchical processing of computations 
within specific networks.

Convergence and clustering may accelerate neural 
communication (by placing neurons that process related 
information in close spatial proximity115) and reduce 
wiring cost127. For example, clustering of face-selective 
neurons may enable fast communication among neurons 
that encode facial features, thereby expediting face cat-
egorization and recognition. Regularities among repre-
sentations, even those that have partial convergence (as 
was shown for place and retinotopic representations18) 
may provide a substrate for increasing the diversity of 
cortical computations: namely, by enabling factorial 
combinations of multidimensional information36,124. In 
turn, this may enable isolated or combined sources of 
information to be accessed flexibly according to task 
demands.

Nested spatial and representational hierarchies. The 
organization of VTC representations along the corti-
cal sheet indicates that different kinds of information 
manifest at different spatial scales (FIG. 5). At the scale 
of the entire VTC (several centimetres), there is an ani-
macy map. Within the animate component of the map 
in the lateral VTC, there are multiple representations of 
ecological categories, such as faces and body parts, each 
spanning ~1 cm. Within face-selective and body part-
selective regions, there are clusters of face-selective and 
body part-selective neurons; these clusters may consti-
tute columns90 (~1 mm) that are differentially tuned to 
features such as eyes128 and face views72,129,130.

We propose that the spatial scale of the representation 
is linked to its level of abstraction, so that more abstract 
representations are implemented in larger spatial scales 
across the VTC (FIG. 5). According to our proposal (from 
small to large), cortical columns represent intermediate 
complexity features90,131,133; columns containing features 
that are shared by exemplars of a category may be clus-
tered into larger regions93,102 that generate basic-level 
representations; and these regions may be arranged 
together with other clusters to form large-scale maps 
that generate broader categorical distinctions. Thus, the 
spatial hierarchy of VTC representations may provide 
a substrate for the visual system — as well as for down-
stream areas involved in categorical decision making132 
— to read out multiple levels of information from multi-
ple spatial scales across the VTC. Access to information 
at a particular level of abstraction may be obtained by a 
top-down gating mechanism that enables the readout 
of information from a particular spatial scale across 
the VTC.

Our proposal is consistent with hierarchical com-
putational models of visual recognition40,41,43. In these 
models, a series of layers process increasingly more 
complex information — from simple features (for exam-
ple, angled lines) to intermediate complexity features 
(for example, face or object fragments) to exemplars 
and categories. The categorization systems described 
in these hierarchical models are tolerant to changes in 
appearance, provide separable category information and 
enable the extraction of different kinds of information 
from various levels of the hierarchy. Although research-
ers have traditionally mapped these hierarchies across 
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the ventral visual processing stream3,36,37,133, we speculate, 
on the basis of the findings reviewed here, that some 
aspect of this computational hierarchy may be imple-
mented at different spatial scales of the representational 
hierarchy within the VTC itself (FIG. 5). Indeed, a recent 
synthesis of anatomical connections of the macaque 
IT134 pointed to the existence of additional hierarchies 
of nested white-matter connections within IT beyond 
the classical connections of the ventral pathway. These 
data provide empirical evidence for a connectivity sub-
strate that might support such a hierarchical organization 
within the VTC.

Conclusions and future directions
In this Review, we have synthesized the current know-
ledge of the human VTC across three levels of analysis: 
computation, representation and implementation. Our 
synthesis has revealed three important insights regarding 
how the anatomical structure of the VTC may support 
the computations and representations that are necessary 
for efficient visual categorization.

First, although the VTC contains a representational 
space with hard-to-determine dimensions, functional 
representations are remarkably orderly in the VTC. 
We showed that both clustered and distributed func-
tional representations in the VTC maintain a consist-
ent spatial topology that is also reliably aligned to gyri 
and sulci. Perhaps most surprisingly, irrespective of 
stimulus dimensions, large-scale maps and fine-scale 
clusters align with one another. This common spatial 
layout suggests that when the VTC is faced with the 
problem of organizing information along the cortical 
sheet, it often implements the same solution: informa-
tion is sorted and placed on different sides of the MFS, 
thus generating a lateral-to-medial functional gradient 
that is shared across representational dimensions. The 
common spatial gradient of many functional represen-
tations is directly linked to the underlying connectivity 
and microarchitecture, which also align with the MFS. 
This relationship was only revealed by clarifying the mor-
phology of the MFS, which suggests that re-examining 
the macroanatomical features within other parts of the 
brain may reveal a similar tripartite relationship in other 
cortical systems. Advancements in in vivo anatomical 
measurements135 may eventually enable this hypothesis 
to be examined in the living human brain. Although we 
focused on the predictability of functional regions from 
the cortical folding patterns within the VTC, this imple-
mentational feature has been observed in other parts 
of the visual system, such as V1 (REFS 136,137), V2–V3 
(REF. 138), V3A139,140, hV4 (REF. 34), hMT+141 and high-level 
regions that are selective for places33, faces113 and body 
parts113 in the lateral occipitotemporal cortex (BOX 1). As 
in the VTC, each of these regions also displays predict-
able convergences, divergences and superimpositions 
with nearby functional maps and clusters. This orderly 
organization of functional representations across all lev-
els of the visual system raises an important question: if 
the same representations were implemented physically in 
a disorganized manner, would this result in less efficient 
and less flexible computations?

Second, the spatial hierarchy of representations 
in the VTC generates an information hierarchy. The 
correspondence between the spatial and information 
hierarchies predicts that implementing distinct lev-
els of categorical abstraction at different spatial scales 
increases the efficiency and flexibility of category pro-
cessing in the VTC. This prediction can be tested empiri-
cally and computationally. Examining how the disruption 
of VTC function at different spatial scales affects differ-
ent types of categorical decisions will test the prediction 
regarding efficiency. Comparing the performance of com-
putational models that incorporate implementational fea-
tures of the VTC with models lacking those features will 

Figure 5 | The spatial structure of nested functional 
representations in the ventral temporal cortex supports 
the hierarchical information structure.  
a | Superimposition of functional representations in the 
ventral temporal cortex (VTC) from the animacy map (top) 
to clustered face-selective regions and body part-selective 
regions (middle) to clustering of neurons with shared 
response properties (bottom). b | Schematic hierarchy 
linking the spatial scale of functional representations 
implemented in the lateral VTC to the scale of information 
that each level represents. We propose that more-abstract 
information is represented at a larger spatial scale and 
more-concrete information at a finer spatial scale. We 
illustrate this idea with animate hierarchies as an example: 
superordinate information (animate) is represented at the 
scale of the entire VTC (several centimetres); information 
about ecological categories such as faces and body parts is 
represented at the centimetre scale; and exemplar 
information and complex-feature information is 
represented at the columnar level or an even smaller 
spatial scale. Additional hierarchies are likely to exist in the 
medial VTC and the VTC more generally.
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test the prediction regarding flexibility. Such approaches 
can also be used to assess how categorical distinctions in 
the VTC interact with processing in other regions, such as 
the prefrontal cortex, which is also involved in categorical 
decision making132. Thus, applying the same framework 
(computation, representation and implementation) to 
other brain regions that are involved in categorization may 
provide crucial knowledge of how information is relayed 
from the VTC and how computational transformations 
from one processing stage to the next might be tied to 
specific implementational features.

Third, the superimposition of representations in the 
VTC generates a substrate for information integration 
and segregation through different levels of convergence 
and divergence. These implementational features enable 
both fast processing of independent information through 
parallel computations in divergent regions and fast com-
munication of related information in convergent regions. 
Although we discussed these computational benefits of 
segregation and integration in the context of the VTC 
and its role in visual categorization, convergence and 
divergence are general organizing principles of the 
brain36,37,124,142. From an engineering perspective, the 
brain may implement the same solution across scales and 
systems because it is composed of the same basic units 

(neurons) and faced with the same problem — accom-
modating a high-dimensional information space across 
the two-dimensional cortical sheet. As such, the prin-
ciples of superimposition, convergence and divergence 
are general neuroanatomical solutions for processing and 
communicating information. How they are implemented 
and what computational and representational constraints 
they resolve may depend on the specific requirements 
of the individual cortical systems. For example, in V1, 
the stacking of representations occurs across columns143, 
whereas in the entorhinal cortex the stacking occurs 
across cortical layers144. Determining how region-specific 
features of superimposition accommodate and resolve 
computational and representational constraints is an 
important topic for future research.

Unravelling the organizational principles of the 
human brain and determining how this organization 
leads to a functionally relevant behaviour is a central goal 
of systems neuroscience. This review of the functional 
architecture of the human VTC brings us a step closer 
to understanding how computations are performed by 
neurons arranged in particular anatomical circuits and 
how this anatomical scaffolding organizes the result-
ing information across spatial scales for efficient visual 
categorization.
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