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Abstract

Exposure to the spatiotemporal statistics of the world is
thought to have a profound effect on shaping the response
properties of the visual cortex and our visual experience.
Here we ask whether subjects’ discrimination performance on
a set of parameterized shapes changes as a function of the
distribution with which the shapes appear in an unsupervised
paradigm.  During training, subjects performed a fixation task
while shapes drawn from a single axis of a parameterized
shape space appeared in the background.  The frequency with
which individual shapes appeared was determined by
imposing a normal distribution centered on the middle of the
shape axis.  Comparison of performance on a shape
discrimination task pre and post training showed that subjects'
d-prime increased as a function of the frequency with which
the exemplars appeared despite the lack of feedback and
engagement in a simultaneous task not directed at the shapes.
Performance on an untrained set of shapes was largely
unchanged across the two testing sessions. This suggests that
the visual system may optimize representations by fitting
itself to the distribution of experienced exemplars even
without feedback, providing the most discriminative power
where examples are most likely to occur.

Keywords: Unsupervised learning, vision, perceptual
learning.

Background

How people are able to discriminate visually similar items

while recognizing the same item across dramatic image
transformations is one of the fundamental problems of

vision. Experience is thought to play a critical role in

forming the underlying cortical representations that support

these abilities. One possibility that has been explored in

computational and behavioral studies is that the visual

system is able to discover and take advantage of statistical

regularities in the retinal input via simple unsupervised

learning mechanisms (Barlow, 1989a). Our proposal is that

unsupervised learning of the frequency of exemplars may

fine-tune cortical representations to best match the

distribution of exemplars within a category, thus providing

the selectivity needed to discriminate between highly similar

images where they are most likely to occur.

Unsupervised learning is a process whereby the brain

receives inputs but obtains neither supervised target outputs,

feedback, nor rewards and as a result finds patterns in the

data beyond what would be considered random noise

(Ghahramani, 2004). The theoretical framework is based on
the notion that the brain’s goal is to build representations of

the input (even without feedback) that can be used for

decision making and predicting future inputs (Poggio et al.,

1992). These self-organizing mechanisms could play a

crucial role in transforming the continuous flux of retinal

stimulation into the stable recognizable objects of our

everyday experience.  It is important to note that there may

be internal reward that guides learning (Seitz and Watanabe,

2005), but this takes place in the absence of explicit

feedback on performance.

 Numerous studies have shown that the visual
system adjusts itself as a function of experience even in

situations where subjects are uninstructed.  Adaptation

represents a phenomenon of this kind, where prolonged

exposure to some stimulus value can shift the sensitivity of

the visual system for a short period of time.  For example,

viewing rightward motion causes subsequently presented

static stimuli to appear as though they are moving to the left

(Anstis et al., 1998).   Such aftereffects are perceptually

compelling, and can be found for a wide variety of visual

features ranging from the relatively simple such as line

orientation to the very complex such as facial identity

(Leopold et al., 2001; Witthoft et al., 2006) and do not
require instruction or feedback (though some may require

attention; Moradi et al., 2005).   With respect to our

proposal, it has been argued that adaptation is not just a

useful way for psychologists to probe the visual system, but

reflects a functional mechanism by which vision increases

its sensitivity to changes in recent experience (Webster et

al., 2001; Barlow & Foldiak, 1989; Clifford & Rhodes,

2005).

Studies of perceptual learning also show

experience dependent changes, but have often relied on the



notion that improvement in discrimination is heavily task

dependent and that mere exposure may not be enough to

drive performance changes (Shiu & Paschler, 1992; Karni &

Sagi, 1991).  However, recent work has suggested

discrimination performance can improve as a result of

unsupervised learning and when subjects are engaged in an
orthogonal task.  For example, Watanabe et al. (Nature,

2001) had subjects perform a central letter detection task

superimposed on a field of moving dots.  5% of the dots

were moving coherently in the same direction, but this

coherence was below the subjects’ detection threshold

meaning they were both unable to detect the direction of

coherence and engaged in a different task.  Following

training, subjects showed improved performance in

direction discrimination of just above threshold coherence

moving dots, but only in the vicinity of the direction seen

during training.  The authors argued that this irrelevant

learning (as they call it) means the visual system can
increase its sensitivity to a frequently occurring feature or

stimulus even when it is not task relevant.  More recently,

the same authors have suggested that internal feedback is

being supplied when there is a success on the orthogonal

task, and that at that time both task relevant and task

irrelevant features are strengthened (Seitz and Watanabe,

2005).

Lastly, numerous experiments have shown that

subjects can successfully learn the spatio-temporal structure

of visual stimuli even in the absence of explicit instruction

or feedback.  For example, following training on sequences
of shapes in which triplets repeat, subjects are able to

discriminate seen before triplets from novel ones (Fiser &

Aslin, 2002; Turk-Brown et al., 2005).  Similar results have

been obtained for arrangements of shapes within an image

(Fiser & Aslin, 2001) and for sequences using natural

scenes (Brady & Oliva, 2008) that show transfer to

sequences that only share categorical similarity and words.

Other work has shown that invariant object recognition (the

ability to recognize exemplars as the same across image

transformations such as position or view) may result from

the visual system taking advantage of spatio-temporal

correlations in the input (Cox et al., 2005; Wallis &
Bulthoff, 2001; Sinha & Poggio, 1996)  While our goal is

not to evaluate subjects’ ability to do the kind of visual

statistical learning for the generation of invariances, these

studies do show that subjects are sensitive to spatio-

temporal information in the visual input.

The idea that visual discrimination and recognition

might be shaped by the distribution of experienced items has

been examined most extensively in the face domain. Some

models of face perception (Valentine, 1991) propose that

faces are represented as points in an abstract vector space,

centered on the norm face representing the average of the
faces a person has seen (Leopold et al., 2001; Rhodes &

Jeffrey, 2006). It is typically assumed that faces are

normally distributed around the mean face with the highest

concentration of faces occurring near the norm. Clearly the

diet of faces that a particular individual is exposed to is

heavily dependent on their local environment and it is

believed that the set of features that might form an

individual’s space are tuned by that person’s experience.

An experiment that relies on training with faces to

test this idea may suffer from competition with the

overwhelming experience a subject brings to the laboratory.
However, a clever experiment by Webster et al. (Nature

2004) navigated this obstacle by asking Asian and

Caucasian-American subjects to set an ethnicity boundary

on a set of morphed faces between an Asian and a

Caucasian face.  Each group set that boundary closer to their

own ethnicity, presumably closer to the average of faces

they had seen and reflecting an increased sensitivity to

deviations from their own experience.  Interestingly, a

second group of Asian subjects who had been in the United

States for approximately one year also did the task, and their

boundary was shifted towards the Caucasian end of the

dimension with the size of the shift significantly correlated
with how long they had been in the US.  While this is not a

direct test of the hypothesis, as the experimenters could not

manipulate the frequencies of exposure across face space

directly, it is suggestive that subjects' representation of faces

is driven by the distribution of the input and that such

changes can occur even in adults.

While there has been much debate over whether

the mechanisms serving face perception are distinct from

those for other kinds of objects (Farah et al., 1998), it seems

likely that mechanisms that adjust sensitivity in order to

match the distribution of similar exemplars would be
generally useful across all classes of objects.    To test this

idea we created sets of novel parameterized shapes,

allowing us to control stimulus variation and frequency that

subjects would have no experience with, thus allowing a

direct test of the role of frequency in determining

sensitivity.  One way to view our shape dimensions is that

each dimension represents a category where the within

category exemplars vary along a physical continuum (as

with faces).  In our preliminary experiment, subjects’ ability

to discriminate similar shapes at various points along a

shape dimension was tested before and after unsupervised

training.  During training we manipulated the frequency
with which subjects experienced different parts of the shape

dimension by sampling shapes from a normal distribution

centered on the middle of the shape axis.  Our hypothesis is

that subjects will become most sensitive to changes in the

regions of the shape dimension that are most frequently

experienced even in the absence of feedback and while they

are engaged in an orthogonal visual task.  This change in

sensitivity would represent one way that the visual system

could adapt to environmental statistics to produce useful

representations for perception (Goldstone, 1998, Barlow &

Foldiak, 1989, Clifford & Rhodes, 2005).

Stimuli

Four “prototype shapes” were created using MATLAB.

Each prototype shape was constructed by placing 16

keypoints on a grid, plus 3 additional points that were fixed



across prototypes (Figure 1A).  The points were made to

correspond across all prototypes, such that the 5th point on

one prototype corresponded to the 5th point on all other

prototypes, etc.  The points were connected (Figure 1B) and

these connections were then replaced by smooth bi-cubic

splines (Figure 1C). Finally, the resulting closed shape was
filled in (Figure 1D).  Care was taken when placing

keypoints to avoid loops in the final shape.

Figure 1. The construction of a prototype shape. (A)

Keypoints (16 variable and 3 fixed (outlined)) are placed on

a grid; (B) the points are connected; (C) the connections are

replaced with smooth bi-cubic splines; (D) the resulting

shape is filled in.

From the 4 prototype shapes (see Figure 2), two continuous
axes were generated joining two pairs of prototypes.  Since

each shape can be fully represented by the positions of its 16

variable keypoints, intermediate shapes between two

prototypes can be formed by linearly weighting the

positions of those keypoints across the prototypes and

recomputing the splines. For example, for an intermediate

shape 25% of the way between Prototype 1 and Prototype 2,

the x-position of first keypoint (x1intermediate) would be equal

to .75 * x1Prototype1 + .25 * x1Prototype2, and so forth. Figure 2

shows the two axes used in our training study, each

consisting of 7 reference shapes.  For the discrimination
tasks, 4 additional shapes were created for each reference

shape, 2 on each side of the shape axis.  One pair was nearer

and considered the hard discrimination, and one pair was

farther and considered the easy discrimination.

Figure 2. Two axes of shapes used in our training study. The
intermediate shapes between the prototypes (endpoints) are

constructed by linearly weighting the positions of the

keypoints and then recomputing the splines.

Methods

Subjects
8 subjects (4 female) participated in the experiment in

exchange for payment. All the experiments were

programmed using MATLAB and the psychophysics

toolbox (Brainard, 1997).   The experimental paradigm was

approved by the Stanford Human Subjects IRB.  All

subjects gave informed consent to participate and were paid

$10 for each session ($50 total for completing all sessions).

Stimuli were presented on Macintosh iMac computers.  One

subject (female) was removed due to poor performance on

the fixation task during training.  Including this data point

actually increases the significance of all our reported

findings, but we cannot be sure that this subject was not

attending to the shapes.

Pre-training Discrimination Test
To assess baseline performance, subjects performed a

same/different task on pairs of shapes (reference shape and

comparison shape). The reference shapes were the 7

examples for each axis shown in Figure 2.  The comparison

shapes were taken from either side of each reference, with

one closer pair (hard discrimination) and one farther pair

(easier discrimination).  We used two levels of difficulty as

we were uncertain as to how initial discriminability
performance might interact with training (Watanabe et al.,

2001). On each trial subjects were presented with a shape

for 200 milliseconds, followed by a 500 millisecond delay,

and then a second shape for 200 milliseconds.   Subjects

were instructed to indicate whether the two shapes were the

same or different by pressing the appropriate key.  A new

trial was not initiated until the subject responded. For each

reference shape there were two levels of comparison trials

(easy and hard) and two sides of the shape axis from which

comparison shapes were drawn.  Each possible comparison

was measured 15 times for a total of (4 comparisons x 7

shapes x 15 times x 2 shape dimensions) 840 different trials.
For each of the 14 shapes there were 30 same trials.  Trials

were presented in a random order and no feedback was

given on any of the trials.   Subjects were tested on shapes

from both shape dimensions, but only shapes from axis 1

were shown during training.

Unsupervised Training
Unsupervised training took place on each of the 3 days

following the initial discrimination experiment.  Subjects

performed a fixation change-detection task, and were
instructed to press a key when the fixation cross slightly

changed in size. The fixation cross was superimposed on a

stream of shapes that appeared at 2 Hz (the shape presented

for 300 milliseconds followed by a 200 millisecond blank)

for the duration of the experiment. These shapes were

sampled with a normal distribution discretized into 73

intervals centered on the shape dimension used in training.

6000 shapes were shown in each session that lasted

approximately one hour each day for a total of 18000 shapes

and 3 hours of training.   Each day’s training was divided

into 6 blocks of 1000 trials.  There were 40 fixation changes
for each block.   Timing of the fixation changes was set by

dividing each block into 40 equal intervals and then

inserting one change at a random time-point in each

interval.  Between blocks subjects were permitted to pause

as long as they felt they needed to.  Presentation of the

stimuli was such that the distribution of shapes was normal

at the block level. Critically, subjects were not instructed to

attend to the shapes nor were they given feedback of any

kind.  The fixation task was intended to draw attention away



from the shapes thus testing for task irrelevant learning

(Seitz and Watanabe, 2005).

Post-training Discrimination Test
The post training discrimination test used the same stimuli

and design as the pre-training test and was conducted on the

day after the last training day.

Figure 3.  Performance of subjects on shape

discriminations before and after training.  The top panel

shows the easy discrimination and the bottom the hard

discrimination. Note the y axes differ slightly, in order to

show the effect for each level of discrimination. The x-axis

shows the reference shapes used in the experiment.  At

bottom are qualitative graphics indicating the distribution of

shapes during training.  For the trained it is Gaussian

centered on the shape axis, and for the untrained it is flat

and at 0 (i.e. no training).

Results
Examination of performance on the fixation task

during the training phase of the experiment showed that

subjects attended to fixation, detecting changes in cross size

91 percent of the time (SE= 2 percent).

For each subject false alarm and hit rates were

separately calculated for each comparison and reference

stimulus for the hard and easy conditions.  The hits and false

alarm rates were used to calculate d-primes(Green & Swets,

1966).  Separate 2 (pre vs post training) by 7 (reference

shape) repeated measures ANOVAs were used to examine
the effects of training in the 4 conditions (hard or easy

discrimination on the trained or untrained shape dimension).

Training showed similar but not identical effects for both

the hard  and easy discriminations (Figure 3 left, bottom and

top panels respectively).  For the hard discriminations, there

was a main effect of training, with higher d-prime following

training (F(1,13)=10.5, p<0.05).  There was also an effect of

stimulus (F(5,13)=2.9, p<0.05) reflecting the fact that on

average, shapes on one end of the dimension were more

discriminable than at the other despite the matched distances

in the parameterization.   For the easy discriminations, the
effects of training and position on the stimulus axis were

only marginal, (F(1,13)=4, p=0.09 for the training and

F(5,13)=8.5, p<0.05 for the effect of stimulus).

For the untrained stimuli, the harder

discriminations showed no significant improvement in

performance post- vs. pre-training (F(1,13)=2.9, p>0.1) and

no stimulus effect (F(6,13)=1.95, p>0.1) (Figure 3 bottom

right).  In the easy discrimination, subjects did significantly

improve as a function of doing the task twice (F(1,13)=6.5,

p>0.05, Figure 3 top right).  There was also a stimulus

effect, showing that for the easy discriminations at least, the

shapes at one end were easier than shapes at the other.  It is
important to note that for a direct comparison of the trained

vs. untrained conditions a second set of subjects is required

who have the relationship between shape dimensions and

training swapped.  Such an experiment is planned, but here

we note that there does not appear to be any effect of

learning which is dependent on the position of the stimulus

on the dimension.

A correlation analysis was used to more directly

assess the relationship between changes as a result of

training and the frequency with which each stimulus

appeared during training.  For each prototype, we created a
normalized frequency score by dividing the number of times

a reference shape appeared by the maximum number of

times a shape could appear (i.e. how often the shape at the

center of the distribution appeared). Critically, the mean

improvement in d-prime was predicted by the frequency of

stimuli during training for the hard discrimination, with

stimuli that were seen more often during training producing

a larger mean improvement in d-prime (r=0.78, p<0.05,

Figure 4 left).  A similar but marginally significant
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relationship was found for the easy discriminations (r=0.72,

p=0.068, Figure 4 right).

Figure 4. Correlations between normalized frequency and

the difference in d-prime pre and post training.  Left panel

shows the easy discriminations, right panel shows the hard

discriminations.

Discussion
These preliminary data show that discrimination

performance selectively improved as a function of the

frequency with which parameterized shapes were presented

in an unsupervised setting while subjects were engaged in

another task.  Our shape dimensions are meant to be

analogous to a within-category set of highly similar

exemplars which are encountered with varying frequency.

Our results suggest that the visual system automatically

tunes itself to this distribution, placing resources where they

are most likely to be needed.

Some caveats obviously obtain.  First it may be
that the learning effects are driven only by frequency rather

than the distribution (or relative frequency).  One can

imagine an experiment with much more training using the

same distribution such that the stimuli at the ends of the

shape dimension are seen as many times as the shapes in the

center of the distribution were seen in the experiment

presented here.  In the strong version of a matching

hypothesis, the same pattern of results would be seen, with

little learning at the ends of the shape dimension and

improved performance appearing only in the vicinity of the

most frequently seen shapes.   If learning depends only on

the frequency, then improvement should be seen across the
entire dimension, possibly reaching an asymptote.  Another

possibility is that discrimination centers around the mean of

the distribution which is here confounded with the

frequency.  This alternative can be tested by using a heavily

skewed distribution and seeing whether the best

performance follows the mean or the mode.

Another possibility is that learning is driven by the

co-occurrence of detected fixation changes with the shapes.

As suggested by Seitz and Watanabe (2005), it may be that

detection of a fixation change generates an internal reward,

and given that the task is not too demanding, all features
present at the time (including the shape onscreen) are

reinforced.  This intriguing hypothesis can be tested in a

number of ways using this paradigm, for example, by only

having fixation changes when an infrequently seen shape is

present.

Finally, this paradigm offers an interesting way to

examine questions of categorization.  For example, suppose
during training that the shapes are sampled using a bimodal

distribution (analogous to say male and female faces).

Although shapes that lie between the two modes are

presented with much lower frequency, this part of the shape

dimension has importance as it could correspond to a natural

category boundary (Rosenthal et al., 2001).  If the visual

system is sensitive to this complex distributional

information, an additional increased sensitivity may be

found at the boundary even though examples are

infrequently presented.  Such a result would suggest a

second mechanism which is takes advantage of multimodal

distributional information to create between category
separation.
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